Artificial Pancreas on the Horizon
An artificial pancreas could revolutionize the treatment of diabetes, and it may only be a few years away.
Made by Medtronic MiniMed of Northridge, Calif., the hockey puck-sized device is implanted under the skin of the abdomen, from where it delivers insulin to the body, "just like the real pancreas," he says.
Lori Hahn, a 41-year-old Californian who has had diabetes for more than a decade, says the implantable pump has changed her life. "Before the pump, my life was a roller coaster, both blood sugar-wise and emotionally," says Hahn, who is participating in a U.S. clinical trial. "I felt out of control and had to focus a lot of my time on controlling my blood sugar.
"With the implantable pump, I can forget I am a diabetic," says Hahn, a working wife and mother of three active youngsters.
The pump, which uses specially formulated insulin, is refilled every two to three months. It delivers insulin in short bursts throughout the day, similar to a pancreas. It is also programmed to deliver higher amounts of insulin for mealtimes. Before a meal or snack, a push of a button on a pager-sized personal pump communicator tells the pump to dispense a dose of insulin.
Other research is focusing on improving communication between the glucose sensor and the external insulin pump. According to Joseph, a major milestone was reached this summer when the FDA approved one of the first smart systems that allows the two systems to communicate via a wireless connection.
Such systems take a lot of the guesswork out of insulin dosing, he says.
Traditionally, patients had to prick their fingers and place the blood on a strip to get a blood sugar reading, estimate how many grams of carbohydrates they planned to eat, and mentally calculate how much insulin they needed. The system left much room for error, with the wrong calculation potentially leading to dangerously high or low blood sugar levels.
With the newly approved Paradigm system, which combines the Medtronic MiniMed insulin pump and a glucose monitor from Becton Dickinson, patients still prick their fingers to measure their blood sugar levels. But the pager-sized glucose monitor transmits the information straight to the insulin pump. The insulin pump then calculates the amount of insulin required for the current blood sugar. By having the pump calculate the dose required, you could prevent errors that sometimes result when patients input this data manually, he says.
"It's up to the patient to decide if the suggested amount is correct and push a button to deliver the recommended dose," Joseph says. "It's not an artificial pancreas as it's not fully automated. But it's a major advance of convenience and has the potential to improve blood sugar control in the clinical setting."
Artificial Pancreas on the Horizon
An artificial pancreas could revolutionize the treatment of diabetes, and it may only be a few years away.
Insulin Pump a Step Forward continued...
Made by Medtronic MiniMed of Northridge, Calif., the hockey puck-sized device is implanted under the skin of the abdomen, from where it delivers insulin to the body, "just like the real pancreas," he says.
Lori Hahn, a 41-year-old Californian who has had diabetes for more than a decade, says the implantable pump has changed her life. "Before the pump, my life was a roller coaster, both blood sugar-wise and emotionally," says Hahn, who is participating in a U.S. clinical trial. "I felt out of control and had to focus a lot of my time on controlling my blood sugar.
"With the implantable pump, I can forget I am a diabetic," says Hahn, a working wife and mother of three active youngsters.
The pump, which uses specially formulated insulin, is refilled every two to three months. It delivers insulin in short bursts throughout the day, similar to a pancreas. It is also programmed to deliver higher amounts of insulin for mealtimes. Before a meal or snack, a push of a button on a pager-sized personal pump communicator tells the pump to dispense a dose of insulin.
Smart System a Major Milestone
Other research is focusing on improving communication between the glucose sensor and the external insulin pump. According to Joseph, a major milestone was reached this summer when the FDA approved one of the first smart systems that allows the two systems to communicate via a wireless connection.
Such systems take a lot of the guesswork out of insulin dosing, he says.
Traditionally, patients had to prick their fingers and place the blood on a strip to get a blood sugar reading, estimate how many grams of carbohydrates they planned to eat, and mentally calculate how much insulin they needed. The system left much room for error, with the wrong calculation potentially leading to dangerously high or low blood sugar levels.
With the newly approved Paradigm system, which combines the Medtronic MiniMed insulin pump and a glucose monitor from Becton Dickinson, patients still prick their fingers to measure their blood sugar levels. But the pager-sized glucose monitor transmits the information straight to the insulin pump. The insulin pump then calculates the amount of insulin required for the current blood sugar. By having the pump calculate the dose required, you could prevent errors that sometimes result when patients input this data manually, he says.
"It's up to the patient to decide if the suggested amount is correct and push a button to deliver the recommended dose," Joseph says. "It's not an artificial pancreas as it's not fully automated. But it's a major advance of convenience and has the potential to improve blood sugar control in the clinical setting."
SHARE